ISIC 2017 - Skin Lesion Analysis Towards Melanoma Detection
نویسنده
چکیده
Preprocessing To prepare the images for the network, each of the training images was resized to 192 pixels by 192 pixels. To create additional training images, each of the training images was elastically distorted. For each of the original training images, four randomly generated elastic distorted images were generated and then resized down to 192 by 192 pixels. In addition, each training image was also rotated 90 degrees and additional elastic distortions were applied to the rotated images.
منابع مشابه
Image Classification of Melanoma, Nevus and Seborrheic Keratosis by Deep Neural Network Ensemble
This short paper reports the method and the evaluation results of Casio and Shinshu University joint team for the ISBI Challenge 2017 – Skin Lesion Analysis Towards Melanoma Detection – Part 3: Lesion Classification hosted by ISIC. Our online validation score was 0.958 with melanoma classifier AUC 0.924 and seborrheic keratosis classifier AUC 0.993.
متن کاملSegmenting Dermoscopic Images
We propose an automatic algorithm, named SDI, for the segmentation of skin lesions in dermoscopic images, articulated into three main steps: selection of the image ROI, selection of the segmentation band, and segmentation. We present extensive experimental results achieved by the SDI algorithm on the lesion segmentation dataset made available for the ISIC 2017 challenge on Skin Lesion Analysis ...
متن کاملSkin Lesion Analysis towards Melanoma Detection Using Deep Learning Network
Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is v...
متن کاملTransfer Learning for Melanoma Detection: Participation in ISIC 2017 Skin Lesion Classification Challenge
This manuscript describes our participation in the International Skin Imaging Collaboration’s 2017 Skin Lesion Analysis Towards Melanoma Detection competition. We participated in Part 3: Lesion Classification. The two stated goals of this binary image classification challenge were to distinguish between (a) melanoma and (b) nevus and seborrheic keratosis, followed by distinguishing between (a) ...
متن کاملRECOD Titans at ISIC Challenge 2017
Our team has worked on melanoma classification since early 2014 [1], and has employed deep learning with transfer learning for that task since 2015 [2]. Recently, the community has started to move from traditional techniques towards deep learning, following the general trend of computer vision [3]. Deep learning poses a challenge for medical applications, due to the need of very large training ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.00523 شماره
صفحات -
تاریخ انتشار 2017